4. Lower air density can also become challenging when designing gas compressors. At sea level, specifying the flow in cubic feet per minute (CFM) or in standard cubic feet per minute (SCFM) is innocuous since their values are approximately equal. However, at high altitude, the difference between actual CFM (ACFM) and SCFM becomes quickly significant. Therefore, if this aspect is not clarified with the manufacturer, it may lead to the wrong compressor sizing and selection.
5. The higher the altitude, the more significant the gap is between relative and absolute pressure, especially when pumping fluids. Thus, proper attention has to be given to the “near to” or “at saturation” level fluids, along with their thermodynamical properties at different pressures and temperatures (e.g., water flashing into steam, pump cavitation) to avoid any unwanted fluid state in the plant process.
6. Along the same lines, carrying fluids in a closed circuit requires special attention when designing the expansion tanks. For instance, manufacturers typically pre-pressurize diaphragm expansion tanks to one (1) ATM. But naturally, in a high-altitude application, this variable needs to be carefully calculated, while considering high and low network points, and validated with the manufacturer before final selection of the equipment.