Apr 21, 2022

Chute design: what you need to understand and the relevance of the DEM tool

  • Article
  • Chute design
  • DEM tool
  • material handling

Mining companies, ports and all industries handling bulk material in conveying systems often experience problems that cause major production losses and higher operational costs when transfer points are poorly designed.

  1. Understanding the root causes of the problem, the design basics and main considerations are of utmost importance.

    Main chute problems

    Chutes are frequently overlooked during the design stage of the conveying systems, which can lead to the following issues:

    • Material build-up and blockages causing unscheduled stops
    • Material spillage and degradation
    • Health and safety risks for operators when deblocking or housekeeping spilled material and carryback
    • Dust emission causing unacceptable contamination or environmental conditions
    • Premature belt wear, misalignment and damage in the downstream conveyor
    • Premature lining wear
    • Higher power consumption

    Main chute design considerations

    Cross section

    Inadequate cross section of the drop chute may lead to material blockages. As a rule of thumb, this cross section should be between three to four times the cross section of the material fed into the chute to avoid these blockages.

    Final sizing will depend not only on the material characteristics, such as flowability and lump size, but also on past field experience with similar materials.

    Material flow assessment and control

    Chute geometry, material trajectory, material impact angle, liners, starting/entry and exit velocities, accelerations and impact pressures should be designed, calculated, and evaluated to:

    • avoid any plugging due to very low material velocities at the impact points or too shallow surfaces and valley angles.
    • establish proper/smooth change of flow directions, stream control and adequate material accelerations, avoiding stagnant points and dust generation.
    • establish rock boxes or liner type needs.
    • give a velocity magnitude and a direction to the exit stream of material as close as possible to the travel direction and velocity magnitude of the downstream or receiving conveyor belt, thus avoiding premature belt wear and damage.
    • centre the exit stream of material on the belt of the downstream or receiving conveyor to avoid belt misalignment.

    Dust and spillage control

    Dust is inherent to solids due to the fracture of material when handled and processed. When disturbed by impact and air streams, dust becomes airborne with consequences that include contamination, safety risks and health issues.

    Dust control is improved with proper design and by implementing active or passive dust control measures.

    The main measures used to minimize dust generation, emissions and spillage are:

    • Reduce the free fall to minimize dust generation at the impact zone.
    • Minimize air passing through the chute by installing rubber curtains at the material entrance, seals at the belt return and seals and curtains in the skirtboard area.
    • Minimize stream disturbance by keeping loading and receiving conveyors as aligned as possible and by aligning the material onto the receiving belt in the belt travel direction.
    • Design the skirtboard cross section and length to keep air velocity low (˂ 1m/s, 200fpm), thus allowing airborne dust and material to settle down before leaving this area.
    • Design the loading point and tailbox to adequately absorb impact energy, while preventing seal loss against the belt.
    • Install, if necessary and possible, dust suppression and dust collection systems.
    • Implement, if adequate and possible, a hood and spoon chute design.
    • Install adequate belt cleaners.

    When dusts are determined to be explosive, specific NFPA standards and local regulations, as per the authority having jurisdiction (AHJ), must be applied to prevent and mitigate the risks of fires and explosions.

    Discrete element modelling applied to chutes

    Discrete element modelling (DEM) is a methodology used to compute the movement and interaction of a large quantity of particles. The development of powerful computational systems has allowed easy access to DEM software that are currently used for diverse applications in various fields and industries, including that of solids handling.

    In the case of chutes, DEM provides a preview of chute performance and material behaviour when passing through, thus giving the designer the opportunity to adjust the design and avoid any of the above-mentioned problems.

    There is a caveat: the material shape, properties and their calibration are crucial to getting accurate results.

  2. Conclusion

    Chutes are critical for the proper performance of any conveying system; they should be designed by experienced material handling engineers. Other than rules of thumb and basic calculations that are essential for any chute design, the DEM is a powerful tool for modelling and adjusting critical transfer points, while minimizing problems and operational risks.

    Reach out to our bulk material handling and NFPA experts for your challenging applications. They will provide you with reliable and tailored solutions for your needs.

This content is for general information purposes only. All rights reserved ©BBA

Latest publications
See all
Let’s see what
we can do
together
Contact us